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Abstract: The kinematics equations of longitude and latitude have singularities in polar of the earth. To solve the problem, a 

solution called the quaternion form of longitude, latitude and heading kinematics equations was created and introduced in the 

paper. The key point of the solution is to define an instantaneous great circle for a moving particle. To a moving particle, it is 

impossible to define three definite Euler angles, thus the definite quaternion to it does not exist. But to the instantaneous great 

circle, three definite Euler angles can be defined. Meanwhile, the instantaneous great circle is rotating by driving of the moving 

particle, thus quaternion can be used to model the instantaneous great circle. The model is the kinematics equations of longitude, 

latitude and heading in quaternion form. This form of equations can be used all over of the earth. It works well on the polar of the 

earth automatically. Verifying by mathematics simulation has been designed and practiced. The simulation includes some flights 

around the earth with flying by the polar and turning in polar region. The results of simulation suggest that the flight plan can be 

executed precisely by the algorithm. The solution can be applied in fields of flight simulation and inertial navigation. 
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1. Introduction 

When studying a moving ship or a flying aircraft, it is 

important to model their position in space. 

The combination of longitude, latitude and altitude is the 

most important set to describe the position of a static or 

moving particle in the technology fields of navigation and 

aerospace. 

To an inertial navigation device which is a physical system, 

acquiring the position in space includes two parts of work. The 

first part is measuring accelerations and angular rates. The 

second part is computing attitude, velocity and position by 

mathematics models. The computing models can be classified 

into two levels, the dynamics level and the kinematics level. 

The whole process of measuring and computing is called 

mechanization in navigation technique field [5]. 

To a simulating system, such as a flight simulator, the 

work of measurement is not necessary. Thus, the two fields 

may share the dynamics models and the kinematics models. 

The general mechanization theory [1-6, 11] describes how 

to acquire the position in either rectangular coordinates or 

geodetic coordinates, i.e., longitude, latitude and altitude. 

There are at least two forms of algorithm about longitude, 

latitude and altitude, one is derivative equations, the other is 

conversion formulas from rectangular coordinates to geodetic 

ones in ECEF frame. 

Both of the two forms of algorithm about longitude have 

singularities in the polar of the earth. 

2. Theory About Longitude and Latitude 

2.1. The Derivative Equations and Their Limits 

The derivative equations describe the changing of longitude 

λ and latitude L as 

� �� � ��/�	
 � �
�� � ��/��	
 � �
�����              (1) 

where �� represents the northern projection of the velocity of 

the particle, ��  represents the eastern projection of the 

velocity of the particle, 	
 represents the local radium of the 

Earth, � represents the altitude of the particle. 

Obviously, the equation about longitude has singularities in 

polar of the Earth, where the latitude is � � �90° and the 
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changing rate of longitude cannot be calculated for ��  is 

divided by zero. 

2.2. Conversion Formulas from Rectangular Coordinates 

in the ECEF Frame 

If the position of a particle in rectangular coordinates is 

acquired, a conversion formula can be used to calculate its 

longitude, latitude and altitude as 
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where �, �, and z represent the rectangular coordinates of a 

point in ECEF frame. 

In polar, � � 0, � = 0, � cannot be calculated either. 

2.3. List of Algorithm About Transpolar Flying or 

Navigating 

Some algorithms have been created and applied in 

transpolar flying or navigating [7-10]. Three popular 

algorithms are: 

(1) Algorithm of transvers coordinate frame [14, 15]; 

(2) Algorithm of grid mechanization [12, 13]; 

(3) Algorithm of normal vector inertial navigation basing 

on earth-fixed frame [16]. 

An algorithm, which might be a new one, called the 

quaternion form of longitude, latitude and heading 

kinematics equations will be introduced in the paper. 

3. Quaternion Form of Longitude 

Latitude and Heading Kinematics 

Equations 

3.1. Review of the Concept of Great Circle 

In the theories of navigation or flight simulation, great 

circle is one of the basic concepts. 

A great circle can be defined as the circle within the 

surface of a sphere with the center same as the center of the 

sphere. 

Obviously, the radius of any great circle is the greatest in 

all circles within the surface of a sphere. 

In the Earth of absolute sphere model, all meridians are 

great circles, and the equator is the only great circle in all 

latitude circle. Besides, there are numberless leaning great 

circles neither a meridian nor the equator. 

The position of a ship is always in the surface of the Earth. 

So, the concept of great circle is adequate to model the 

movement of a ship. But to an aircraft, its position might be 

out of any great circle. So, the concept of great circle needs 

to be expanded. An expanded concept based on the great 

circle is the flat surface of a great circle. That is a flat surface 

including the center of the Earth. 

3.2. Declaration and Definition of an Instantaneous Great 

Circle 

The instantaneous great circle declared in the paper might 

be a new concept. 

Instantaneous great circles are a sub-aggregate of the 

aggregate of great circle. The distinguishing feature of an 

instantaneous great circle to a general great circle is that an 

instantaneous great circle is rotatable. 

Observing a moving particle referenced to the Earth, we 

can determine a great circle by the tangent of its track and the 

center of the Earth except some special cases. The special 

cases include two. One is that the particle is static, the other 

is its tangent crosses the center of the Earth. 

Firstly, analyze the general case. When a particle is 

moving continuously, the great circle decided by former rule 

always exists. So, the great circle is declared as an 

instantaneous great circle or an embroiled great circle. 

Then, treat the two special cases. In the cases, instantaneous 

great circles are not non-existent, it is just un-definite. Or there 

are countless instantaneous great circle to the cases. 

To these cases, it might as well to choose one of the 

countless instantaneous great circles. For example, the 

longitudinal axis of a ship’s body frame can be chosen to 

determine the instantaneous great circle. 

With continuous movement of a particle, its instantaneous 

great circle is moving too. Maybe we can describe that as a 

moving particle is driving its instantaneous great circle. 

Obviously, the movement of an instantaneous great circle 

is pure rotation without translation in ECEF frame. 

3.3. Definition of the Body Frame of an Instantaneous 

Great Circle 

In order to model an instantaneous great circle, we’d better 

to define a 3-D frame for it. One of the definitions will be 

described as follows. 

 

Figure 1. The Definition of the Body Frame of an Instantaneous Great 

Circle. 
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The origin of the frame is the center of the Earth. A line 

from the origin to the point of a particle is defined as the axis 

of ��� . The line which is from the origin, perpendicular to ���  and in the plane of the instantaneous great circle is 

defined as ��� . The third axis ���  is defined to a normal 

line of the plane of the instantaneous great circle, which is 

from the origin, and according to the rule of right hand. 

The described definition of the body frame of an 

instantaneous great circle is shown in Figure 1. 

3.4. Definition of the Euler Angles of an Instantaneous 

Great Circle 

After defined a body frame for an instantaneous great 

circle, we can define three Euler angles for it to describe its 

attitude referenced to ECEF frame. 

In possibility, there are several choices to define three Euler 

angles for an instantaneous great circle. After comparison, a 

choice called the directing definition was chosen. It is: 

The longitude is defined as the heading of the 

instantaneous great circle,  �� � �; 

The latitude is defined as the pitch angle, !�� � �; 

The heading of the horizontal velocity of a vehicle can be 

defined as the bank angle of the instantaneous great circle, "�� �  . 

The definition of Euler angles is shown in Figure 2. 

 

Figure 2. Definition of the Euler Angles of an Instantaneous Great Circle. 

3.5. Analysis of the Angular Velocity of an Instantaneous 

Great Circle 

Except for the center of the Earth, the vector of the 

velocity of a particle P always can be decomposed into two 

parts. One is the horizontal velocity �# , the other is the 

vertical velocity �$. 

Meanwhile, there is acceleration vector of P. Decomposed the 

acceleration vector into 3-D orthogonal parts. One is parallel to 

the horizontal velocity, named as %#&. The second is in the 

horizontal level but vertical to �# , named as %#' , meaning 

lateral acceleration. The third is parallel to �$, named as %$. 

The decomposition of the velocity and acceleration of P is 

shown in Figure 3. 

 

Figure 3. Projections of the Vector of Velocity and Acceleration of P. 

Then let us try to analyze the rotation of the instantaneous 

great circle driven by its moving particle. 

Vertical velocity �$  can only change the altitude of a 

particle. But if thinking of the self-rotation of the Earth, �$ 

can create Carioles acceleration except in polar. The direction 

of the Carioles acceleration is in horizontal plane. So, the 

possible effect of it will reflect in the horizontal acceleration; 

Horizontal velocity �#  can directly drive its 

instantaneous great circle rotating around the axis ��� . So, 

we get ()�� � �#/�	
 � �
; 
Vertical acceleration %$ can change vertical velocity �$ 

without directly driving the instantaneous great circle; 

Horizontal tangential acceleration %#*  can only change 

horizontal velocity �#  without directly driving the 

instantaneous great circle; 

Horizontal lateral acceleration %#'  can change the 

direction or heading of horizontal velocity �#, or make it 

yawing. The yawing equation is �# '� � %#'. 
As we all know, the angular rate  �' is different from  � . The 

latter one is the yaw rate of a rigid body or a coordinate fame, 

which can be measured by gyroscope. And the former one is the 

yaw rate of the horizontal velocity and the steady value of the 

latter. It can be calculated that based on measurement. The case 

is like relation of path angle and pitch angle. 

Corresponding to  �' , there is a curvature radius ρ of 

particle P when it is turning. 

Their relationship is shown in Figure 4. 

 

Figure 4. Yaw of a Moving Particle. 
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According to the theory of kinematics, there is an equation 

of vector form as 

 '� × - � �#                   (3) 

When the direction of �# is invariant,  '�  is zero, - is 

infinite. When a ship or an aircraft is turning, its curvature 

radius ρ will be in a range from hundreds of meters to 

thousands of meters promptly. Because the curvature radius ρ is not too big, we regard vector  '�  is parallel to axis ��� . 

So, the projection of  '� 	is completely on axis ��� . That is (/�� =  �                   (4) 

Finally, we obtain the angular velocity of an instantaneous 

great circle as 

0(/��(1��()��2 = 3
 '�0�#/(	
 + ℎ)4          (5) 

Equation (5) can be applied for many kinds of vehicle but 

helicopters. Because there might be a case of moving laterally 

after a period of being static. In this case, before we define its 

instantaneous great circle by the vector of velocity, it is almost 

impossible for us to define an instantaneous great circle when 

it is static which can be continuous to the latter one. 

To solve this case, let us change the definition of an 

instantaneous great circle a little. Referring to a rigid body 

has the property of inertia, thus it always rotates continuously 

under limited torture. So, it might as well to define the 

instantaneous great circle corresponding to the body frame of 

a vehicle. But considering of the longitudinal axis is not 

always horizontal, we can define a temporary frame based on 

a body frame. The temporary frame has the same heading as 

its body frame but has zero pitch and zero bank. We can 

define the instantaneous great circle by the temporary frame 

with the same heading of its body frame. 

According to the definition, we get another angular 

velocity of and instantaneous great circle for a rigid body as 

0(/��(1��()��2 = 3
 ��5/(	
 + ℎ)�6/(	
 + ℎ)4            (6) 

Where �5 represents the right velocity,	�6  represents the 

forwarding velocity. 

It has been proved that (6) works well. 

3.6. Rotation Equations of an Instantaneous Great Circle 

After finishing the work of above, we can get rotation 

equations of an instantaneous great circle. 

Directly, there are three rotation equations in a form of 

Euler angle. But the form includes two singularities when 

pitch angle is ±90°. 
To solve the problem, we can use the theory of quaternion. 

Rotation equations in a form of quaternion work well without 

any singularity. 

To a particle, as it has not three definite Euler angles, it is 

difficult to use quaternion theory to model it. 

After we define an instantaneous great circle and three 

Euler angles to a particle, we can create a set of rotation 

equations in quaternion form to a moving particle or a rigid 

body. That is 

78�98�:8�;8�<= =
:; 7
−()��8: − (/��8; − (1��8<()��89 + (1��8; − (/��8<(/��89 −(1��8: + ()��8<(1��89 + (/��8: − ()��8; =       (7) 

In (7), the vector ?89, 8:, 8;, 8<@ represents the quaternion 

of a rigid body or a 3-D frame. It can describe the attitude of 

it. The quaternion is a substitute of Euler angles. The 

changing rate of a quaternion ?8�9, 8�:, 8�;, 8�<@ can describe 

the rotating of a rigid body or a 3-D frame. Obviously, there 

is not any singularity point in (7) all over the Earth. 

Equations (7) is an algorithm about longitude, latitude and 

heading. 

3.7. Corresponding Algorithm 

The quaternion is not as direct as Euler angles indeed. The 

problem has been solved by the theory. There are two group 

of corresponding formulas in quaternion theory. The 

formulas for calculating quaternion form Euler angles are, 

ABB
CB
BD89 = cos HI;J cos HK;J cos HL;J − sin HI;J sin	(K;)sin	(L;)8: = cos HI;J cos HK;J sin HL;J + sin HI;J sin	(K;)cos	(L;)8; = cos HI;J sin HK;J sin HL;J + sin HI;J cos	(K;)cos	(L;)8< = cos HI;J sin HK;J cos HL;J − sin HI;J cos	(K;)sin	(L;)

  (8) 

The formulas for calculating Euler angles form quaternion 

are: 

ABC
BD  = arctan	[− ;(RSRTURVRW)RVSURWSXRSSURTS]� = arctan	[− ;(RWRTURVRS)RVSXRWSURSSURTS]� = arctan	[2(8:8; + 898<)]

          (9) 

3.8. The Additional Acquirement of Heading Kinematics 

By using the quaternion form of the equation, we have an 

additional acquirement of heading kinematics. 

If it is unnecessary to calculate the longitude and latitude, 

we can regard the ground as an infinite plane. The heading of 

a vehicle or a vector projected in the plane will not be 

changed by the position changing. The heading equation is ψ = ψ9 + [ �\]             (10) 

Else if we need to calculate the longitude and latitude in a 

sphere frame, we have to face the question of a changing 

heading with the changing latitude and longitude. 

Here are two examples. One is that when an aircraft is 

going to cross the north pole by flying straightly, its heading 

will not be constant, it will change rapidly. The other is that 

when an aircraft is circling around the north pole, its track 
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projected in the ground will be a latitude circle. In the 

process, its heading is constant of east or west. But its 

yawing rate is not zero. So, it is somewhat difficult to model 

the heading movement. 

After we create (7), the question of heading algorithm is 

solved naturally. 

4. Some Results 

Some study of mathematics simulation has been designed 

and done to verify the algorithm introduced above. 

The simulating conditions are: 

An aircraft flying toward north, western north, or eastern 

north from a point near north pole; 

The aircraft will fly under the control of auto pilot with the 

mode of bank hold instead of heading hold or horizontal 

navigation; 

One instruction degree of bank is 0. In the case, the aircraft 

will try to fly more than 40,000 km. To observe whether the 

simulating aircraft can complete a round-the-Earth by a great 

circle; 

Another instruction degree of bank is about �20°. To 

observe whether the simulating aircraft can fly around the 

north pole with a circle track. 

Some results are shown as Figure 5 and Figure 6. 

 

Figure 5. Part of Horizontal Track of Round-the-Earth Flight. 

 

Figure 6. Horizontal Track of Turning Around the North Pole by a Constant 

Bank Degree. 

The Figure 5 shows that the simulating aircraft can finish a 

perfect flight of round-the-Earth with the algorithm. 

The Figure 6 show that the simulating aircraft can fly 

around the north pole in circle by a constant bank with the 

algorithm. 

5. Conclusion 

Theory of quaternion has been created for many years. It is 

succeeded in modeling rotation without any singularity 

which exist in Euler angles form. 

To a moving particle, it is difficult to model its movement 

in a sphere frame by quaternion theory as there are not 

definite Euler angles to it. 

If we define an instantaneous or embroil great circle for a 

moving particle or a rigid body, we can define three definite 

Euler angles for the great circle. Then we can create 

equations about longitude, latitude and heading in quaternion 

form without any singularity. 

 

References 

[1] Savant C J. (1961). Principle of Inertial Navigation [M]. New 
York: McGraw-Hill. 

[2] Broxmeyer C. (1964). Inertial Navigation Systems. 
McGraw-Hill Book Company, New York, NY, USA. 

[3] Titterton D H. (1997). J L Weston, Strapdown Inertial 
Navigation Technology [M], on behalf of the Institution of 
Electrical Engineers, London. 

[4] Esmat Berkir. (2007). Introduction to modern navigation 
system [M]. New Jersey, USA, World Scientific. 

[5] Aboelmagd Noureldin, Tashfeen B. Karamat, Jacques Georgy. 
(2013). Fundamentals of Inertia Navigation, Satellite-based 
Positioning and their Integration. Srpinger. DOI: 
10.1007/978-3-642-30466-8. 

[6] Savage P G. (1998). Strapdown inertial navigation integration 
algorithm design part 2: velocity and position Algorithm [J]. 
Journal of guidance, Control and dynamics, vol. 21 (2), pp. 
208-229. 

[7] Dyer G C. (1971). "Polar navigation - A new transverse 
Mercator technique [J]". Journal of Navigation-, vol. 24 (4), pp. 
484-495. 

[8] Davydenko L. (2015). "Arctic navigation [J]", Polar 
Navigation. vol. 2 (1), pp. 173-181. 

[9] Andriani S, Lysandros T. (2013). "Choosing a suitable 
projection for navigation in the arctic [J]". Marine Geodesy, vol. 
36 (2), pp. 234-259. 

[10] Gade K. (2010). "A non-singular horizontal position 
representation [J]". The Journal of Navigation, vol. 63, pp. 
395-417. 

[11] Yongyuan Qin. (2020) Inertia Navigation System. Beijing. 
Science Press. (in Chinese). 

[12] Zhou Q, Qin Y Y, Fu Q W. (2013). Grid Mechanization in 
Inertial Navigation Systems for Transpolar Aircraft. Journal of 
Northwestern Polytechnical University, vol. 31 (2), pp. 
210-217. (in Chinese). 



 American Journal of Traffic and Transportation Engineering 2023; 8(4): 99-104 104 

 

[13] Qi Zhou, Yazhou Yue, Xiaodong Zhang & Yu Tian. (2014). 
Indirect Grid Inertial Navigation Mechanization for 
Transpolar Aircraft. Journal of Chinese Inertial Technology. 
doi: 10.13695/j.cnki.12-1222/o3.2014.01.005. 

[14] Yiqing Yao, Xiaosu Xu & Jinwu Tong. (2015). Indirect 
Transverse Inertial Navigation Algorithm in Polar Region. 
Journal of Chinese Inertial Technology. doi: 
10.13695/j.cnki.12-1222/o3.2015.01.007. 

[15] Meng Liu, Guangchun Li, Yanbin Gao, Ying Li & Di Wang. 
(2017). Algorithm of Global Navigation for Inertial Navigation 
System Based on Pseudo-Earth Frame. Journal of Chinese 
Inertial Technology. doi: 
10.13695/j.cnki.12-1222/o3.2017.04.004. 

[16] Chan Liu, Wenqi, Wu, Guohu Feng & Maosong Wang. (2020). 
Polar Navigation Algorithm for INS Based on Virtual Sphere 
n-vector. Journal of Chinese Inertial Technology. doi: 
10.13695/j.cnki.12-1222/o3.2020.04.001. 

 


